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Abstract

It is often desirable to evaluate an image based on its
quality. For many computer vision applications, a perceptu-
ally meaningful measure is the most relevant for evaluation;
however, most commonly used measure do not map well to
human judgements of image quality. A further complication
of many existing image measure is that they require a refer-
ence image, which is often not available in practice. In this
paper, we present a “blind” image quality measure, where
potentially neither the groundtruth image nor the degrada-
tion process are known. Our method uses a set of novel
low-level image features in a machine learning framework
to learn a mapping from these features to subjective image
quality scores. The image quality features stem from natu-
ral image measure and texture statistics. Experiments on a
standard image quality benchmark dataset shows that our
method outperforms the current state of art.

1. Introduction

In numerous computer vision, computer graphics, and
image processing applications it is necessary to evaluate im-
age quality. The measurement of “quality” cannot be easily
defined, as it often depends on context and personal prefer-
ences. However, when restricted to low-level aspects, image
quality as perceived by human observers is a measurable
and consistent property [23], even when comparing images
with different content and degradation types.

In the signal and image processing literature, the most
common measure for judging image quality are straightfor-
ward measure such as PSNR (Peak-Signal-To-Noise) [25],
yet, it is well known that PSNR does not correlate well with
perceptual quality. Furthermore many measure require a
reference image for comparison, making them useful only
in limited situations, such as in synthetic experiments.

In most practical cases, a reference image is not avail-
able, and image quality assessment is more difficult. Re-
covering a reference image or its properties (either explic-
itly or implicitly) for image quality assessment is equivalent

to the general “blind image enhancement” problem, which
is ill-conditioned even if the degradation process is known.

Recent work has sought to break these limitations by
developing more perceptually meaningful reference-based
measure [27] and ones that do not require a reference [20].

While existing methods have shown some promise, they
still do not predict human quality judgements very accu-
rately. One of the largest difficulties in computing a percep-
tually relevant score is the variability in how different types
of image degradation processes affect an image’s structure
and statistics. As a result the scores from exiting meth-
ods often are biased by the type of degradation, making it
difficult to compare quality between images with different
or unknown degradation processes, e.g. comparing a blurry
image to a noisy image.

The Blind Image Quality Index (BIQI) addressed this
problem by using distortion-specific image quality measure
as well as a distortion-type classifier [17]. They learn a
mapping for images under five different types of distortion
(noise, blur, JPEG, JPEG2000, fast fading) over a range of
distortion amount. Given a new image they have to identify
the distortion type and then measure it. Although BIQI per-
forms impressively in its specific setup, its utility is some-
what limited. It requires an accurate classification of the
distortion type, which is itself a difficult problem. Conse-
quently it does not address the bias very well, as shown in
Fig. 1(a). And it assumes that only one distortion type dom-
inates, which is often not the case in practice. This hard
classification can prohibit computing a meaningful qual-
ity measure. Furthermore, it is not trivial to extend BIQI
method to handle additional distortion types, as a dual prob-
lem needs to be solved to both reliably recognize and mea-
sure the distortion.

We propose a learning based blind image quality mea-
sure (LBIQ) that is more perceptually correlated and less bi-
ased by distortion type, as shown in Fig. 1(b). Our measure
addresses the above limitations by designing novel low-
level image quality features that measure aspects of image
structure and statistics that are useful for discriminating de-
graded and un-degraded images. Instead of using a small
number of measure, LBIQ achieves good performance by
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Figure 1. Computational v.s. subjective scores on the LIVE image
quality assessment database [24]. Ideally the plot would scatter on
the dashed line. Due to the variability of how different types of
distortion degrades image structure and statistics, BIQI is biased
by the type of degradation, yet, our LBIQ measure minimizes this
bias by incorporating numerous image quality features in a learn-
ing framework. Besides, the rich set of feature we use ensures
LBIQ to be more tightly correlated to the subjective score.

combining and incorporating numerous image quality fea-
tures with a regression algorithm. The algorithm is able to
correlate the underlying structure of distorted images with
perceptual image quality without the need to provide a ref-
erence image.

The key contributions of our method include: (1) sev-
eral novel low-level features for measuring image quality
and (2) an algorithm to combine these features in order to
learn a perceptually relevant image measure. To the best of
our knowledge, our method is the first perceptually accu-
rate image quality measure that does not require a reference
image nor knowledge of the image degradation process and
provides scores that are not biased by the degradation type.
Our experimental results show that our LBIQ measure sig-
nificantly outperforms state of art blind image quality as-
sessment methods.

2. Related work
There are numerous cases where it is desirable to com-

putationally evaluate image quality. For most applications,
a perceptual accurate measure is the most relevant measure
for evaluation, as a human observer is the final consumer of
the image. Depending on the application, the measurement
of “image quality” conveys many different aspects from
how much is the image degraded by a specific distortion
type to how “realistic” or “beautiful” an image looks.

2.1. Low-level quality assessment

A common use of an image quality measure is to judge
the accuracy of an image compression or rendering algo-
rithm against some reference “ground-truth” solution. In
these cases, the relevant evaluation measure are known

as “full-reference” measure. Since the reference image is
known, a quality index can be computed from an image dis-
similarity measure such as PSNR [25]. As direct measure
often do not correlate well to image quality as perceived
by human observers, numerous researchers have extended
image dissimilarity measure to be more perceptually mean-
ingful [27, 14]. Further improvements have been made by
modulating and pooling local reference scores according to
the gradient of the reference image [13].

Unfortunately, there are numerous cases where a refer-
ence image is unavailable, such as when judging the quality
of a denoising algorithm on a real-world dataset, where the
underlying noise-free image is unknowable. In this case,
one would need a “no-reference” or “blind” measure. In
a “no-reference” measure, while the ground-truth image is
unknown, some assumptions about the underlying image
structure or content is usually made. Several different ap-
proaches have been taken along these lines. One approach
is to model artifacts for specific types of image degradation
and then measure the amount of these artifacts present in an
image to determine a quality measure. Another approach is
to correlate natural image statistics with subjective measure,
e.g. the BLIINDS measure [20] predicted perceptual image
quality by linear regression on DCT statistics.

2.2. High-level quality assessment

The definition of “image quality” can be as high-level
as measuring “realism” or “beauty” of an image. In this
regime, digital forensics algorithms aims at differentiat-
ing real photographs from photo-realistic synthesized im-
ages [5, 16] and doctored photographs [6]. Evaluating the
aesthetic quality of photographs [4, 12, 15] is also a very re-
lated area of work. The primary distinction is that aesthetic
quality appears to be a much more subjective and personal-
ized measure than that of low-level image quality [23]. Al-
though these final goals slightly differ from image quality
assessment, the underlying goals are quite similar, as syn-
thesized images can be viewed as being (slightly) distorted
images, and our work is in some sense a subset of aesthetic
quality. We utilize some of the concepts in this related area
of work to develop our low-level image features, but ex-
plicitly focus on an objective evaluation of how distortions
affect perceptual image quality.

2.3. Learning-based quality assessment

To achieve good generalization across image content and
distortion types and to have a perceptually meaningful re-
sult, we learn a measure that combines a number of low-
level features to map to image quality scores from human
observers. This concept has been also used by other recent
works in evaluating image quality, especially in the case of
high-level image measure such as digital forensics and pho-
tograph aesthetics.
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There has also been some work involving using learning
techniques for the low-level aspect of image quality, e.g. [2]
used SVM regression to assess the quality of color images
given a known reference image.

Jung and Leger [11] used artificial neural networks to
compute a blind image quality index, but only apply this
framework in situations with a specific type of distortion.
BIQI [17] computed a more generic quality measure with
SVM and addressed the bias across distortion by identifying
distortion type first. While our LBIQ measure shares some
similarities with this work, in that we too learn an image-
quality measure from image features, our contribution in
not only from the learning framework we use, but also from
our design of a rich set of low-level features. Our feature set
allows any distortion type to find a considerably large set of
supporting features for evaluating its quality, which enables
our algorithm to have good generalization power across im-
ages and distortion types regardless of image content and
the potential presence of multiple distortions types in one
image.

3. Image quality features

The key contributions of our work are our analysis and
development of novel low-level features for measuring im-
age quality and the use of these features to learn an image
measure that correlates with the perception of human ob-
servers. In such learning based paradigms, the strength of
the results heavily weighs on having a comprehensive set of
discriminant features for the desired task. Given previous
work, we believe that the task of image quality assessment
benefits from a thorough analysis of current measure and
features and this analysis leads to a better understanding of
the area and the development of novel features.

Thus our methodology for selecting and designing rele-
vant features included a lengthy process of extracting differ-
ent features across a set of images and distortions and ob-
serving trends and correlations that reflected the change in
perceptual quality. For this process, we tested each feature
on the LIVE Image Quality dataset [24]. This dataset in-
cludes 29 reference images, each containing around 30 im-
ages that covers 5 distortion types: JPEG2000, JPEG, white
noise, blur, and analog transmission loss of JPEG2000 en-
coded images (also known as fast fading). The percep-
tual score of each image is computed by collecting evalu-
ations of about 23 trained human subjects, removing outlier
subjects and scores, and finally compensating for the bias
across reference images and subjects.

The design of our features relies on several key observa-
tions regarding image quality:

• A good objective function (or image prior) for image
enhancement is a good measure of image quality;

Figure 2. Reference image used for extracting features that are vi-
sualized in subsequent figures in this paper.

• Texture statistics are a good indicator of distortion ar-
tifacts;

• Noise and blur are two fundamental degradation pro-
cess that occur in a variety of distortion types, and can
be directly measured.

In the following sections we present the image quality
features we used to learn our LBIQ measure. For each fea-
ture, we illustrate its behavior on images of the same ref-
erence image (Fig. 2) of similar subjective quality but with
different distortion types.

3.1. Natural image statistics

We assume that an image that is likely to be a “natural”
image is also of high quality and thus investigate numerous
objective functions used in the literature of image enhance-
ment. Among them, we have found that high-frequency
responses of images are an effective facility for many im-
age enhancement problems. Although they appear in differ-
ent forms from image gradients [3], DCT coefficients [28]
to field of experts responses [19], the statistics of these re-
sponses behave similarly.

In our work, we use complex pyramid wavelet transform
due to its reconstruction properties, pyramid representation,
and translational invariance property[18].

Under this setup, natural images are most commonly de-
scribed as images whose real or imaginary coefficients fol-
low a zero-peak, heavy-tailed distribution. As shown in
Fig. 3(a), noise smooths the distribution of the wavelet co-
efficients, while blur compresses the distribution towards
zero by reducing contrast of the image. The extent of blur
in compressed images is not as significant as with Gaussian
blurred images of the same quality because the former also
suffers from compression artifacts, which is not conveyed
in the distribution of real coefficients.

In our test data, we found it more effective to repre-
sent the coefficients by magnitude and phase instead. Sim-
ilar to real coefficient distributions, we found blur com-
presses the magnitude distribution and noise changes its
shape (Fig. 3(b)). The phase distribution of the coefficients
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Figure 3. Marginal histograms of wavelet coefficients.

shows a distinct capability to discriminate compression ar-
tifacts by showing a oscillating pattern (Fig. 3(c)), resulting
from quantization error produced by compression.

The distribution can be compactly described by analyt-
ical models. It has been found that the real and imaginary
coefficients distribution can be modeled by a generalized
Gaussian [3]:

p(x; γ, λ) =
γλ1/γ

2Γ(1/γ)
exp (−λ|x|γ) , (1)

and the magnitude distribution can be modeled with a
Weibull distribution [7]:

p(x; γ, λ) =

{
λγxγ−1 exp (−λ|x|γ) x ≥ 0

0 x < 0
. (2)

With these two models, we can evaluate the maximal
likelihood of an image as a natural image with a MAP
(Maximum A-Posteriori) estimate. In our implementation,
we estimated the generalized Gaussian and Weibull param-
eters with MLE(Maximal Likelihood Estimation). Both
the estimated model parameters and the likelihood achieved
with these parameters are used as features, in order to con-
vey both prior distribution of parameters and the likelihood
of the image under the most likely parameters.

The cross-scale distribution of wavelet coefficient mag-
nitude is also a meaningful feature, as high quality image
often show self-similarity across scales [8]. Accordingly,
the coarse scale and fine scale coefficients are statistically
correlated. The behavior of a distortion on this joint distri-
bution is similar to what occurs to the marginal distributions
(Fig. 4(b)); the only difference is that the extent of degrada-
tion is larger in the finer scale than the coarser scale.

3.2. Distortion texture statistics

When the distortion becomes severe, the likelihood of
being a natural image is so low that it is difficult to discrim-
inate the difference in quality using a natural image model.
However, a distortion-specific texture typically arises. For
instance, JPEG images often present an 8x8 block texture,
and JPEG2000 images of high compression rates often suf-
fer from ringing around corners and edges. Therefore, the
prominence of these textures is a good measure that com-
plements that of natural image prior based features. We ob-
served in the test data that the cross-scale distribution of
coefficient phase a good indicator of distortion-induce local
image texture, as shown in Fig. 4(b).
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Figure 4. Cross-scale wavelet coefficient distribution for
JPEG2000 distorted images of bad quality.

3.3. Blur/noise statistics

Although each distortion types has a distinctive way to
degrade image structure, we found blur and noise funda-
mental to various distortion types. In the following we char-
acterize these two degradation processes with three existing
techniques.

Patch PCA singularity Due to the redundancy of natu-
ral images in content, the intrinsic dimensionality of local
patches of an image is much lower than its actual dimen-
sion. Therefore, we perform principal component analysis
on these patches and use the singular values as an indicator
of the intrinsic dimensionality of the patch manifold. The
singular values are then a meaningful measure of smooth-
ness vs. randomness in a patch. Increases in image blur
will squeeze the values to zero as it goes to less significant
eigenvectors. In comparison, noise increases evenly in each
eigenvectors and results in a more uniform distribution in
singular values(Fig. 5(a)).

Two-color prior based blur statistics Joshi et al. show
that the “two-color model”, i.e., assuming that all local col-
ors are a linear combination of two colors, is a good model
for natural, sharp images [10]. Thus we use the method de-
scribed by Joshi et al. to fit each local patch with a two color
model and recover a primary and secondary color layer, an
alpha layer, and a residual image. The alpha layer is a good
indication of blur as a more peaked alpha distribution in-
dicates a sharper image (i.e., more pixels in the image are
exactly equal to the primary or secondary and are not in-
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Figure 5. Singularities of 5 × 5 patches and Two-color model co-
efficient histograms.
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(a) M1: marginal distribution

feature # dimension
negative log histogram of magnitude 720
negative log histogram of real 720
negative log histogram of phase 720
MLE estimates of GGD parameter/likelihood of real 36
MLE estimates of WBD parameter/likelihood of magnitude 36

(b) M2: cross-scale joint distribution

feature # dimension
negative log histogram of phase 7200
negative log histogram of magnitude 7200

(c) M3: blur/noise statistics

feature # dimension
Patch PCA singular values 25
negative log histogram of alpha value 10
negative log histogram of residual 20
step edge based blur/noise estimation 2

Table 1. List of features for each kernel machine

between) and residual image is a good measure of noise arti-
facts, since independently distributed colored noise lies out-
side the color model. Therefore, we use the log distribution
of the alpha and residual image as image quality features.
As shown in Fig. 5(b), blurry images have more transparent
pixels and therefore have a less peaked distribution of alpha
values in comparison to the reference image, while noisy
images are not well modeled by the two-color model and
thus have larger residual.

Direct blur kernel and noise estimation As a final mea-
sure of blur and noise level, we run the blind kernel estima-
tion method of Joshi et al. [9] to compute a spatially invari-
ant blur kernel and noise level estimate. This method makes
predictions based on edges in the images and tries to infer
a kernel that would produce the observed edges from as-
sumed underlying step edges. We use the maximum of the
covariance of the blur kernel as a feature and the reported
standard deviation of the noise as a separate feature.

4. Learning algorithm

While each feature is carefully designed and motivated
by the physical properties of image distortions, we cannot
expect that each individual feature would work well across
all the distortion types. Consequently, we propose exploit-
ing the complementary properties of all the features by com-
bining different predictors to build an estimator that predicts
a perceptual image quality measure. In particular, our LBIQ
measure consists of an ensemble of regressors trained on
three different groups of features (summarized in Table 1),
whose outputs are then further combined to produce the fi-
nal LBIQ score.

As many of our features are negative log histograms, the
dimensionality of the features is extremely high. There-
fore, we first perform principal component analysis (PCA)

for each group of feature in order to reduce to a lower di-
mension, which is selected by cross validation. These low-
dimensional projections are then used to train a ε-SVM re-
gression model [21] for each group of feature. Formally,
if we denote the low dimension projection of jth feature
coefficients/histogram for image i as xji , we then solve the
following optimization problem:

wj = arg min
w

1

2
||w||2 + C

∑
i

ξi + C
∑
i

ξ∗i (3)

s.t. ∑
n

wnk(xji , x
j
n) + bj − yi ≤ ε+ ξi,ξi ≥ 0 (4)

yi −
∑
n

wnk(xji , x
j
n)− bj ≤ ε+ ξi,ξi, ξ

∗
i ≥ 0 (5)

Here yi is the subjective image quality of the i−th image
and k(·, ·) is the kernel function. In our implementation, we
use radial basis function(RBF) as a kernel:

k(x, xi) = exp(−γ|x− xi|2). (6)
Once this optimization is performed, the image quality for
a test image can be computed as:

ȳj =
∑
i

k(xj , xji )w
j
i + bj (7)

We combine the results of our three individual SVM re-
gression outputs using a weighted linear combination of the
the kernel SVM outputs:

LBIQ =
∑
j

µj · ȳj . (8)

The weights of the linear combination are learned by
minimizing prediction error on the validation set:

µ∗ = arg min
∑
i

(LBIQi − yi)2 (9)

This is a least squares minimization problem, and the
unique, global optimum can be easily found by solving a
small linear system. We experimented training a kernel re-
gression on the concatenation of all features, but found that
our combination of multiple SVMs to be more effective and
far more efficient.

5. Implementation details
Although there is some redundancy in our feature sets,

we didn’t prone the features as we found the combination
of all features outperform using a subset of it. Besides, we
projected all features into the log space as we found this
would allow the RBF kernel to produce a more meaningful
distance metric.

The complex steerable pyramid we use has 3 scales and
4 orientations. When computing histograms of wavelet co-
efficients, we discretize each coefficient into 60 bins for
marginal histograms and 30 bins for joint histograms. In
computing the two-color prior based features, we perform
color clustering on local 5 × 5 patches. The resulting al-
pha values and residuals are discretized into 20 bins. We
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Figure 6. The t-SNE embedding of the concatenated feature space.
In both images, each point corresponds to an image. In left image,
color encodes subjective quality score; in right image, color en-
codes distortion type. This embedding verifies that our designed
feature set naturally clusters images degraded in a similar way and
by a similar extent.

actually only used the first 10 bins in the alpha histogram,
noticing that the over-saturated alpha values does not help
prediction.

We used LIBSVM [1] to perform the regression. Both
the dimension of PCA and the SVM parameters are selected
by cross validation. In particular, we select PCA dimension
for each SVM among 20, 40, 60, and 80, and tune the SVM
parameters with a 2D grid search in the log space followed
by a simplex search based refinement.

6. Experimental results
We perform experiments to explore (1) how well do our

features capture variations due to different distortions type,
(2) how well does the learned predictive model perform on
the task of assessing perceptual image quality, and (3) the
failure modes. All experiments are tested on the LIVE im-
age quality assessment database [24].

We split the dataset into a training set of 10 reference
images, a validation set of 5 reference images and a test
set of 14 reference images. Because we are interested in
gaining generalization power across images, we made sure
that these three sets do not overlap in reference images. The
actual number of images in each set is spanned by the 5
types of distortions and 5 to 6 distortion levels per type.

Local neighborhood embedding of features We investi-
gate how well the features are able to capture the variations
due to distortion type by performing non-linear dimension-
ality reduction using the t-SNE [26] algorithm to recover a
local embedding using the feature representation of the im-
ages. Figure 6 shows the embedding of the LIVE dataset
with color encoding the subjective quality score(left) and
distortion type(right) of each image. We observe that this
embedding tends to cluster together blurry images regard-
less of the source of blur (Gaussian, JPEG2000, etc.) while
separating them from noisy images. This means we can
predict the quality of an image from all relevant distortion
types, rather than referring to a specific subset of the train-
ing data as BIQI. Further, adjacent images in the t-SNE em-

JP2K	   JPEG	   WN	   GB	   FF	   Overall	  

LBIQ	   11.93	   13.17	   7.91	   9.51	   17.95	   12.65	  
M1	   15.81	   19.01	   7.89	   11.65	   19.60	   15.60	  
M2	   12.88	   13.35	   8.29	   10.03	   18.94	   13.00	  
M3	   18.58	   19.04	   10.32	   13.80	   19.51	   16.92	  

6	  
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18	  

RM
S	  
Er
ro
r	  

Figure 7. Median root mean square error between prediction and
subjective score (lower means better). Much of the strength of
our LBIQ measure comes from the second kernel machine which
trains on cross-scale histogram and statistics of wavelet coeffi-
cients. However, the combination of all three machines decreases
the Median RMSE up to 1.

bedding are typically close in quality, also guaranteeing the
exemplar to be expressive enough for prediction.

Regression performance We first examine regression
performance on individual machines. Fig. 7 shows the root-
mean-square prediction error for all distortion types by the
three kernel machines we trained (lower values are better).
We found that the second SVM, which was trained on cross-
scale wavelet coefficients, was best performing because it
is both effective in images of good quality with the self-
similarity feature and in images with severe distortions with
the phase based texture feature. However, the combination
of all SVMs takes advantage of the strength of all three ma-
chines, and improve the performance on challenging data
such as JPEG2000 and fast fading images.

Next, we explore predictive power of the learned SVM
regression model. Since many applications require a re-
liable order of images based on quality, we used Spear-
man order correlation coefficient as the final performance
measure (higher means better). We compared the perfor-
mance of our LBIQ measure with BIQI [17] as the state of
art blind image quality assessment method. We conducted
150 rounds of performance evaluation. In each round
we randomly partitioned the dataset into three content-
independent sets for training, validation, and testing. As
shown in Fig. 8, our method significantly out-performs
BIQI for every distortion type without explicitly estimating
the distortion types.

We also performed a more thorough comparison to nu-
merous full-reference measure including PNSR, multi-scale
SSIM and VIF and blind measure including BIQI and BLI-
INDS [20]. As shown in Fig. 9, our LBIQ measure is very
competitive compared to state of art blind quality indices
such as BIQI and BLIINDS. It also outperforms PNSR, the
most common full-reference measure. Although it is not
as good as that of SSIM and VIF, we believe the perfor-
mance of LBIQ is comparable to these two contemporary
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JP2K	   JPEG	   WN	   GB	   FF	   Overall	  

LBIQ	   0.90	   0.92	   0.97	   0.88	   0.78	   0.89	  
BIQI	   0.80	   0.89	   0.95	   0.85	   0.71	   0.82	  
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Figure 8. Median spearman order correlation between prediction
and subjective score (higher the better) on each distortion type and
the entire dataset. Our LBIQ measure significantly outperforms
BIQI in all distortion types (as reported in [17]). The error bar
provides the minimal and maximal spearman correlations achieved
through 150 test runs.

reference-based methods yet the no-reference requirement
of LBIQ makes the problem much harder.

Success and failure modes Finally we evaluate our
method on individual subsets of the same reference images
to examine the success and failure modes of our algorithm.
We found that the poorly performing datasets typically in-
clude periodic textures, such as with roof tiles or water,
that are difficult to discriminate from JPEG artifacts (see
Fig. 10(a)). In comparison, the reference image achieving
highest correlation (Fig. 10(b)) is composed of smooth ar-
eas of sky and water and texture areas of stones and grass,
as well as step edges: all well conveyed in our natural image
model.

7. Conclusions
In this work, we dived into the design of low level fea-

tures for image quality assessment by looking into features
derived from natural image statistics, texture features and
blur/noise estimation. After in-depth analysis, we found
that the magnitude and phase of high-frequency filter re-
sponses encapsulate much more information than the con-
ventional real-imaginary (i.e. odd and even filter) represen-
tations as they can capture compression artifacts with the
phase features. Also, using this representation to model the
cross-scale wavelet coefficient distributions renders features
very well correlated with perceptual image quality. Our use
of direct blur/noise measurements also produces useful fea-
tures for image quality assessment. Neighborhood embed-
ding of our proposed features well clusters images of similar
quality and relevant distortion type, indicating good poten-
tial to generalize our learned measure to new images and
distortion types. To take advantage of the strength of all
features, we used kernel SVM to combine different features.
Experiments on the LIVE image quality benchmark dataset
shows that our method significantly outperforms state of art
no-reference image assessment algorithm in all aspects.

LBIQ	   BIQI	   BLIIND	   PNSR	   SSIM	   VIF	  

Overall	   0.89	   0.82	   0.79	   0.85	   0.91	   0.95	  1	  
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Figure 9. Median spearman order correlation between prediction
and subjective score on the entire dataset through 150 test runs.
Our method (blue) perform much better than state of art blind qual-
ity indices (red) and comparably to current reference-based quality
indices (green) although we do not require a reference image.

For future work, we believe our algorithm can be im-
proved by using a more elegant learning framework such
as boosting or image specific weighting to combine the fea-
tures. Besides, observing that the strength of the RBF kernel
relies on dense sample of image, we also consider doing a
larger user study to enrich the training set we use. We also
think it worthwhile to apply our image quality features and
learning algorithm to create a new full-reference measure
and, given that LBIQ eliminates distortion-specific bias so
well, expect it to become the new frontier in reference-based
image quality assessment .
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