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We describe a framework for improving the quality of personal photos by using a person’s favorite photographs as examples. We observe that the majority
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focus on correcting these types of images and use common faces across images to automatically perform both global and face-specific corrections. Our system
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1. INTRODUCTION

Using cameras tucked away in pockets and handbags, proud parents,
enthusiastic vacationers, and diligent amateur photographers are
always at the ready to capture the precious, memorable events in
their lives. However, these perfect photographic moments are often
lost due to an inadvertent camera movement, an incorrect camera
setting, or poor lighting. Such imperfections in the photographic
process often cause a photograph to be a complete loss for all but
the most experienced photo-retouchers. Recent advances in digital
photography have made it easier to take photographs more often,
providing more opportunities to capture the “perfect photograph”,
yet still too often an image is unceremoniously discarded with the
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photographer lamenting “this would have been a great photograph
if only...”

There is still a large gap in quality of photographs between an ad-
vanced and casual photographer. Advances in digital camera tech-
nology have improved many aspects of photography, yet the abil-
ity to take good photographs has not increased proportionally with
these technological advances. Cameras have increased resolution
and sensitivity, and many consumer cameras have “scene modes” to
help less experienced users take better photographs. While such im-
provements help during capture, they are of little help in correcting
flaws after a photograph is taken.

Recent work has begun to address this issue. A common approach
is to use image-based priors to guide the correction of common flaws
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Fig. 1. Automatically correcting personal photos. We automatically enhance images using prior examples of “good” photos of a person. Here we deblur a
blurry photo of a person where the blur is unknown. Using a set of other sharp images of the same person as priors (left), we automatically solve for the
unknown blur kernel and deblur the original photo (middle) to produce a sharp image (right); the recovered blur kernel is shown in the top right enlarged 3×.

such as blurring [Fergus et al. 2006], lack of resolution [Freeman
et al. 2002], and noise, due to lack of light [Roth and Black 2005].
Work in this area tends to rely on priors derived from a large number
of images. These priors are specific to a particular domain, such as
a face prior for superresolution of faces or a gradient distribution
prior for natural images, but they tend to be general within the
domain, that is, they capture properties of everyone’s face or all
natural images. Such methods are promising and have shown some
impressive results; however, at times their generality limits their
quality.

In this article, we take a different approach toward image correc-
tion. We note that many consumer photographs are of a personal
nature, for example, holiday photographs and vacation snapshots
are mostly populated with the faces of the camera owner’s friends
and family. Flaws in these types of photos are often the most no-
ticeable and disconcerting. In this work, we seek to improve these
types of photos and focus specifically on images containing faces.
Our approach is to “personalize” the photographic process by using
a person’s past photos to improve future photos. By narrowing the
domain to specific, known faces we can obtain high-quality results
and perform a broad range of operations.

We implement this personalized correction paradigm as a
postprocess using a small set of examples of good photos. The
operations are designed to operate independently, so that a user
can choose to transfer any number of image properties from
the examples to a desired photograph, while still retaining cer-
tain desired qualities of the original photo. Our methods are
automatic, and we believe this image correction paradigm is
much more intuitive and easier to use than current image editing
applications.

The primary challenges involved in developing our “personal im-
age enhancement” framework are: (1) decomposing images such
that a number of image enhancement operations can be performed
independently from a small number of examples, (2) defining
transfer functions so that only desired properties of the exam-
ples are transferred to an image, and (3) correcting nonface areas
of images using the face and the example images as calibration
objects. In order to accomplish this, we use an intrinsic image
decomposition into shading, reflectance, and color layers and de-
fine transfer functions to operate on each layer. In this article,
we show how to use our framework to perform the following
operations.

—Deblurring: removing blur for images when the blur function is
unknown by solving for the blur of a face,

—Lighting transfer and enhancement: transferring lighting color
balance and correcting detail loss in faces due to underexposure
or saturation,

—Superresolution of faces: creating high-resolution sharper faces
from low-resolution images.

We integrate our system with face detection [Viola and Jones 2001]
to obtain an automated system for performing the personalized en-
hancement tasks.

To summarize, the contributions of this article are: (1) the concept
of the personal “prior”: a small, identity-specific collection of good
photos used for correcting flawed photographs, (2) a system that re-
alizes this concept and corrects a number of the most common flaws
in consumer photographs, and (3) a novel automatic multiimage de-
blurring method that can deblur photographs even when the blur
function is unknown.

2. RELATED WORK

Digital image enhancement dates back to the late 60’s with much
of the original work in image restoration, such as denoising and
deconvolution [Richardson 1972; Lucy 1974]. In contrast, the use
of image-derived priors is a relatively recent development. Image-
based priors have been exploited for superresolution [Baker and
Kanade 2000; Liu et al. 2001; Freeman et al. 2002], deblurring
[Fergus et al. 2006], denoising [Roth and Black 2005; Liu et al.
2006; Elad and Aharon 2006], view-interpolation [Fitzgibbon et al.
2005], in-painting [Levin et al. 2003], video matting [Apostoloff and
Fitzgibbon 2004], and fitting 3D models [Blanz and Vetter 1999].

These priors range from statistical models to data-driven example
sets, such as a face prior for face hallucination, a gradient distribu-
tion prior for natural images, or an example set of high- and low-
resolution image patches; they are specific to a domain, but general
within that domain. To the best of our knowledge, most work us-
ing image-based priors is derived from a large number of images
that may be general or class/object specific, but there has been very
little work in 2D image enhancement using identity-specific pri-
ors. Most work using identity-specific information is in the realm
of detection, recognition, and tracking in computer vision and face
animation and modeling in computer graphics. In the latter realm,
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recent work by Gross et al. [2005] has shown that there are sig-
nificant advantages to using person-specific models over generic
ones.

A related area of work is photomontage and image compositing
[Agarwala et al. 2004; Levin et al. 2004; Rother et al. 2006]. In
the work of Agarwala et al. [2004], user interaction is combined
with automatic vision methods to enable users to create composite
photos that combine the best aspects of each photo in a set. Another
related area of work is digital beautification. Leyvand et al. [2006]
use training data for the location and size of facial features for “at-
tractive” faces as a prior to improve the attractiveness of an input
photo of an arbitrary person. We see our work as complementary
the work of Agarwala et al. [2004] and Leyvand et al. [2006], as
while we all share similar goals of improving the appearance of
people in photographs, we focus more on overcoming photographic
artifacts and do not seek to change the overall appearance of a
subject.

Our individual corrections use gradient-domain operations pio-
neered by Perez et al. [2003]. Our work also shares similarities with
image fusion methods and transfer methods [Reinhard et al. 2001;
Eisemann and Durand 2004; Petschnigg et al. 2004; Agrawal et al.
2005; Bae et al. 2006] in that we use similar image decompositions
and share similar goals of transferring photographic properties.

Our face-specific enhancements are inspired by the face-
hallucination work of Liu et al. [2007]. Liu et al. [2007] use a set
of generic faces as training data that are prealigned, evenly lit, and
grayscale. Where our work differs is that we use identity-specific
priors, automatic alignment, and a multilayered image decomposi-
tion that enables operating on a much wider range of images, where
the images can vary in lighting in color, and we perform operations
in the gradient domain. These extensions enable the use of a more
realistic set of images (with varied lighting and color), improve
matching, and give higher quality results. Furthermore, Liu et al.
[2007] do not address in-painting and hallucinating entire missing
regions, as we show in Figure 8.

Our deblurring algorithm is related to the work of Fergus et al.
[2006] and multiimage deblurring methods [Bascle et al. 1996; Rav-
Acha and Peleg 2005; Yuan et al. 2007]. Fergus et al. [2006] recover
blur kernels assuming a prior on gradients on the unobserved sharp
image and in essence only assume “correspondence” between the
sharp image and prior information in the loosest sense, in that they
assume the two have the same global edge content. Multi-image
deblurring is on the other end of the spectrum. These methods use
multiple images of a scene acquired in close sequence and generally
assume strong correspondence between images. Our method resides
between these two approaches with some similarities and several
significant differences.

Relative to multi-image methods, we assume moderate corre-
spondence, by using an aligned set of identity-specific images; how-
ever, we allow for variations in pose, lighting, and color. To the best
of our knowledge, deblurring using any type of face-space as a
prior, let alone our proposed identity-specific one, is novel. Both
our method and Fergus et al.’s [2006] are in the general (and large)
class of Expectation-Maximization (EM)-style deblurring methods.
Where they differ is in the specific nature of the prior and that our
method is completely automatic given a set of prior images. Fergus
et al.’s [2006] work, on the other hand, requires user input to select a
region of an image for computing a PSF. In our experience, this user
input is not simple, as it often requires several tries to select a good
region and must be done for every image. Furthermore, our work is
computationally simpler using a Maximum A Posteriori (MAP) es-
timation instead of variational Bayes, which leads to a ten to twenty
times speedup.

3. OVERVIEW

We present several image enhancement operations enabled by hav-
ing a small number of prior examples of good photos of a person.
The enhancements are grouped into two categories: global image
corrections and face-specific enhancements. Global corrections are
performed on the entire image by using the known faces as cali-
bration objects. We perform global exposure and white-balancing
and deblurring using a novel multi-image deconvolution algorithm.
For faces in the image we can go beyond global correction and
perform per-pixel operations that transfer desired aspects of the ex-
ample images. We in-paint saturated and underexposed regions, cor-
rect lighting intensity variation, and perform face-hallucination to
sharpen and super-resolve faces. Our system operates on base/detail
image decomposition [Eisemann and Durand 2004] and therefore
these operations can be performed independently. As illustrated in
Figure 2, our system proceeds as follows.

(1) Automatically detect faces on target images and prior images.
(2) Align and segment faces in target and prior images.
(3) Decompose images into color, texture, and lighting layers.
(4) Perform global image corrections.
(5) Perform face-specific enhancements.

Step 1 outputs a set of nine feature points for each target and prior
face and step 2 produces a set of prior images aligned to the target
image with masks indicating the face on each image. Both steps
are discussed in detail in Section 6. Step 3 is discussed in the next
section, step 4 in Section 4, and step 5 in Section 5.

3.1 Prior Representation and Decomposition

In this work, we derive priors from a small collection of person-
specific images. In contrast with previous work using large image
collections [Hays and Efros 2007], our goal is to use data that is
easily collected by even the most casual photographer, who may not
have access to large databases of images.

Researchers have noted that the space spanned by the appearance
of faces is relatively small [Turk and Pentland 1991]. This obser-
vation has been used for numerous tasks including face recognition
and face hallucination [Liu et al. 2007]. We make the additional
observation that the space spanned by images of a single person
is significantly smaller; when examining a personal photo collec-
tion the range of photographed expressions and poses of faces is
relatively limited. Thus we believe the use of a small set of person-
specific photos to be a relatively powerful source for deriving priors
for image corrections.

While expression and pose variations may be limited, lighting and
color can vary significantly between photos. As a result, a central
part of our framework is the use of a base/detail layer decomposi-
tion [Eisemann and Durand 2004] that we use as an approximate
“intrinsic image” decompostion [Barrow and Tenenbaum 1978;
Land and McCann 1971; Finlayson et al. 2004; Weiss 2001; Tappen
et al. 2006]. In such as decomposition, an image is represented as a
set of constituent images that capture intrinsic scene characteristics
and extrinsic lighting characteristics. Intrinsic images are an ideal
construct as they: (a) allow us to use a small set of prior images to
correct a broad range of input images and (b) they enable modifying
image characteristics independently.

We adopt the base/detail layer decomposition used by Eisemann
and Durand [2004] that makes this separation based on the Retinex
assumption and uses an edge-preserving filter to decompose lighting
from texture. We decompose an RGB image I into a set of four
images [r, g, L , X ] , where Y = R + G + B represents luminance
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Fig. 2. Personal image enhancement pipeline. First we use face detection to find faces in each image and align the prior images to the person in the target
photo. The images are then decomposed into intrinsic images: color, texture, and lighting. First global image corrections are performed and then face-specific
enhancements. We combine the global and face-specific results using gradient domain fusion.

and r = R/Y and g = G/Y are red and green chromaticity. L , the
lighting (or base) image, is a bilaterally filtered version of luminance
Y . X , the shading image, is computed as X = Y/L . For the sake of
simplicity of terminology, for the remainder of this article, we will
refer to the (r, g) chromaticity reflectance images as “color layers,”
L , the base image as the “lighting layer,” and X , the shading layer,
as the “texture layer.”

The layers from our example set are used for direct example-
based techniques and to derive statistical priors. To achieve this, we
follow the hybrid model of Liu et al. [2007] and perform corrections
using both a linear eigenspace and a patch-based nonparametric
approach.

3.2 Enhancement Framework

We create a desired processed image I with layers I =
[Ir , Ig, IL , IX ] from a given observed image O = [Or , Og, OL , OX ]
and an aligned set of prior images where one prior image is
P = [Pr , Pg, PL , PX ]. We automatically align the prior images P to
O and compute a mask, F , for each face automatically. Alignment
and mask computation is discussed in the next section.

The aligned, intrinsic prior layers are used directly for a patch-
based method, and we also create eigenspaces for these layers. From
each aligned and cropped intrinsic prior layer we create a set of or-
thogonal basis vectors using SVD. We denote P as a matrix of basis
vectors and P μ as the mean vector that describes a feature space
for the examples. An example of this is shown in Figure 4. Unlike
previous work in this area, since our set of examples is small we
do not use a subspace; our basis vectors capture all the variation in
the data, and thus we are simply using Singular-Value Decomposi-
tion (SVD) to orthogonalize the data. Thus, our “personal prior” is
the entire set of aligned layers and basis and mean vectors for each
space.

As illustrated in Figure 2, we perform image enhancement by
creating a desired image I , by first performing global corrections to

obtain the image I G , and then we perform face-specific corrections
to obtain the final result I .

Face-specific enhancements are performed in the gradient domain
using Poisson image editing techniques [Pérez et al. 2003], where an
image is constructed from a specified 2D guidance gradient field, v ,
by solving a Poisson equation: ∂ I/∂t = ∇ I − div(v). Specifically,
this can be formed as a simple invertible linear system: L I = div(v),
where L is the Laplacian matrix. We refer the reader to the paper
by Perez et al. [2003] for more details on gradient-domain editing.

3.3 Face Alignment and Mask Computation

To align faces in examples to a face in the input image, we use an
implementation of the automatic face detection method of Viola and
Jones [2001]. The detector outputs the locations of faces in an image
along with nine facial features, the outside corner of each eye, the
center of each eye, bridge and tip of the nose, and the left, right, and
center of the mouth. From these features we align the faces using
an affine transformation.

When performing face-specific enhancement, it is also necessary
to have a mask for the face in the input and prior images. We auto-
matically compute these by using the feature locations to initially
compute a rough mask labeling face and nonface areas of the image.
First our system creates a “trimap” by labeling the image as fore-
ground, background, and unknown regions. The foreground area is
marked as the pixel inside the convex hull of the nine detected fea-
tures. The edge is labeled as background and the remaining pixels
are in the unknown region. We compute an alpha-matte using the
method of Levin et al. [2006] and threshold this soft-segmentation
into a mask. The threshold is 50% and we eroded the mask pixels
by ten pixels to get the final mask. An example of a mask is shown
in Figure 3.

In the following sections, we describe our enhancement and cor-
rection functions and how each uses our prior.
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Fig. 3. Mask computation and layer decomposition. We perform our corrections on an “intrinsic image”-style decomposition of an image into color, lighting,
and texture layers. This enables a small set of example images to be used to correct a broad range of input images. In addition, it allows us to modify image
characteristics independently. We also automatically compute a mask for the face that we use as part of our face-specific corrections.

Fig. 4. Eigenfaces constraint. We use linear feature spaces built from an
aligned set of good images of a person as a constraint in our image en-
hancement algorithms. Here we show the eigenfaces used as a prior for the
delurring result shown in Figure 1.

4. GLOBAL CORRECTION OPERATIONS

Many aspects of a person’s facial appearance, particularly skin color,
albedo, and the location of features, such as the eyes and nose,
remain largely unchanged over the course of time. By leveraging
their relative constancy, one can globally correct a number of aspects
of an image.

We consider global corrections to be those that are calculated us-
ing the face area of an image and are applied to the entire image.
Our global corrections use basis and mean vectors constructed from
the example images as a prior within a Bayesian estimation frame-
work. Our goal is to find the most likely estimate of the uncorrupted
image I given an observed image O . This is found by maximizing
the probability distribution of the posterior using Bayes’ rule, also
known as Maximum A Posteriori (MAP) estimation. The posterior
distribution is expressed as the probability of I given O .

P(I |O) = P(O|I )P(I )

P(O)
(1)

I can then be recovered by maximizing this posterior or minimizing
a sum of negative log likelihoods.

I = argmax
I

P(I |O) (2)

= argmax
I

P(O|I )P(I ) (3)

= argmin
I

L(O|I ) + L(I ) (4)

L(O|I ) is the “data” term and L(I ) is the image prior. The specific
form of each value is different for each correction. In our system, we
correct for overall lighting intensity and color balance and perform
multiimage deconvolution to deblur an image.

4.1 Image Deblurring

We deblur an image of a person using our personal prior as a con-
straint during image deconvolution. While pixel-wise alignment of
the blurred image and the prior images is difficult, a rough alignment
is possible, as facial feature detection on down-sampled blurred
images is reliable. The feature space for texture layers from our
personal prior is then used to constrain the underlying sharp im-
age during deconvolution. We rely on the variation across the prior
images to span the range of facial expressions and poses.

We only consider blur parallel to the image plane and solve for a
shift-invariant kernel. We model image blur as the convolution of an
unknown sharp image with an unknown shift-invariant kernel plus
additive white Gaussian noise:

O = I ⊗ K + N , (5)

where N ∼ N (0, σ 2).
We formulate the image deconvolution problem using the

Bayesian framework discussed before, except that we now have
two unknowns I and K . We continue to minimize a sum of negative
log likelihoods.

L(I, K |O) = L(O|I, K ) + L(I ) + L(K ) (6)

Given the blur formation model (Eq. (5)), we have

L(O|I, K ) = ||O − I ⊗ K ||2/σ 2. (7)

We consider O = O F
X O F

L , which is the observed image’s lumi-
nance, where the superscript F indicates that only the masked face
region is considered (we will drop the F notation in later sections
for the sake of readability). The sharp image I we recover is the
deblurred luminance.

The negative log likelihood term for the image prior is

L(I ) = λ1 L(I |P , P μ) + ||∇ I ||q , (8)
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which maintains that the image lies close to the examples’ feature
space by penalizing distance between the image and its projection
onto the space, which is modeled by the eigenvectors and mean
vector (P , P μ)). We have determined empirically that λ1 = 400
works well.

The term also includes the sparse gradient prior of Levin et al.
[2007]: ||∇ I ||q .

The feature-space used in the prior is built from the exam-
ples’ texture layers times the observation’s lighting layer, that is,
Pi = Pi

X OL , for each example i . This implicity assumes that the
blurring process does not affect the lighting layer, that is, the prior’s,
examples and the observation have the same low-frequency lighting.
While this assumption may not always be true, it holds in practice
as lighting changes tend to be low frequency.

To use this feature space, we define a negative log likelihood term
using a robust distance-to-feature space metric.

L(I |P , P μ) = ρ
(
[P ′P (I − P μ) + P μ] − I

)
(9)

P represents the matrix whose columns are the eigenvectors of
the feature-space, and P ′ is the transpose of this matrix. This term
enforces that the residual between the latent image I and the robust
projection of I on to the feature-space [P , P μ] should be minimal.
ρ(.) is a robust error function described next.

We use a robust norm (rather than L2 norm) to make this pro-
jection more robust to outliers (for example, specular reflections
and deep shadows on the target face or feature variations not well-
captured by the examples ). For ρ(.) we use the Huber norm.

ρ(r ) =
{

1
2 r 2 |r | � k

k|r | − 1
2 k2 |r | > k

(10)

k is estimated using the standard “median absolute deviation”
heuristic. We use an Iterative Reweighed Least-Squares (IRLS) ap-
proach to minimize the error function.

For the sparse gradient prior, instead of using q = 0.8, as Levin
et al. use, we recover the exponent by fitting a hyper-Laplacian to
the histogram of gradients of the prior images’ faces. To fit the
exponent, consider that the p-norm distribution is y = ce(x)−p

(c is a constant) , taking the log of both sides results in: log(y) =
log(c) + −plog(e(x)). If y = ||∇ I F || and x is the probability of
different gradient values (as estimated using a histogram normalized
to sum to one), p is the slope of the line fit to this data. By fitting
the exponent in this way we constrain the gradients of the sharp
image in a way that is consistent with the prior examples; in our
experience, the recovered p is always between 0.5 and 0.6.

The prior on the kernel is modeled as a sparsity prior on the values
and a smoothness prior on the kernel, which are common priors used
during kernel estimation. The likelihood L(K ) is

L(K ) = λ2||K ||p + λ3||∇K ||2, (11)

where p < 1.1

Blind deconvolution is then performed using a multiscale, al-
ternating minimization, where we first solve for I using an initial
assumption for K (we use a 3x3 gaussian) by minimizing L(I |B, K )
and then use this I to solve for K by minimizing L(K |B, I ). Each
subproblem is solved using iterative reweighted least-squares.

In performing debluring, we recover only the sharp image data
for the face and the kernel describing the blur for the face. If the
person in the target photograph did not move relative to the scene,

1We have found our method is relatively insensitive to the value of p as long
as it is < 1. p = 0.8 seems to work well.

this blur describes the camera-shake and we use the method of Levin
et al. [2007] to deblur the whole image. A result from our method
is shown in Figure 1.

4.2 Exposure and Color Correction

The goal of this part of our framework is to adjust the overall in-
tensity and color-balance of the target photograph such that they
are most similar to that of well-exposed, balanced prior images. We
model this adjustment with scaling parameters for the lighting and
color layers.

We robustly match the target face’s lighting and color to mean
lighting and color vector from the prior feature-spaces. We again
formulate this using the Bayesian framework and minimize a sum
of negative log likelihoods. For exposure correction, the data term
is

L(O|I ) = ||OL − ωL IL ||2, (12)

where ωL is a scalar value. The image prior is

L(I ) = L(IL |P Lμ) = ρ
(

P Lμ − IL
)
. (13)

For white-balancing, we use an equation of the same form to com-
pute scaling values ωr and ωg using the respective Ir , Ig , P rμ, and
P gμ values.

In practice, if ωL > 1 we set it equal to 1, so we do not scale
down image exposure. For color-balancing, as skin tones do not
span a large color gamut we perform a simple white-balance, that
is, independent scaling of the color layers, as we have found it to be
the only reliable transformation we can perform. In particular, we
have found that a full linear transformation or a nonlinear transform,
such as histogram matching, often has too many degrees of freedom
and produces undesired results. Examples of global exposure and
white-balancing are shown in Figure 5.

5. FACE-SPECIFIC ENHANCEMENT

In many cases, global corrections will not remove all the flaws in
an image. While shortcomings of the corrections will generally be
unnoticed for non-face regions, they are likely to be objectionable
for faces, as people are much more sensitive to their appearance.
Thus, we perform local corrections on faces.

5.1 Modifying Lighting and Texture

We address several image corrections under the umbrella of hallu-
cinating high-frequency texture. Lack of detail due to defocus blur
or oversmoothing during deconvolution, lack of resolution, or satu-
ration of an image can be corrected by transferring high-frequency
information from the aligned texture layers of the personal prior. In
the case of over- and underexposure, saturated and clipped areas can
be in-painted by hallucinating parts of all intrinsic image layers.

Restoring high-frequency texture. For this process, we decouple
hallucinating a sharp-texture layer I into making global and local
estimates, I L and I G respectively, where the I = I L + I G . The
global component I G captures the lower frequencies of the image
and the local component I L captures the highest-frequency data.
This is the same decomposition used by Liu et al. [2007].

When the blur is unknown, such as for defocus and motion blur,
I G is the result of the blind-deconvolution method in Section 4.1.
When the blur is known, such as with superresolution, we minimize
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Fig. 5. Exposure and color correction. Using the same set of prior images our system automatically corrects exposure and white-balance for three different
images containing the same person.

Fig. 6. Defocus blur. A set of sharp, in-focus priors (first image). An image suffering from blur due to misfocus (second image). A close up on original image
(third image) and the corrected face after removing the defocus blur by hallucinating texture from priors (fourth image), and a visualization showing which
parts of the face came from different patches (fifth image).

this equation.

L(I G |O, K ) = ||O − I G ⊗ K ||2/σ 2 + λ1 L(I |P , P μ) + ||∇ I ||q
(14)

When performing superresolution, K is an antialiasing filter.
To recover I L we use a patch-based nonparametric Markov net-

work that is a combination of the method of Liu et al. and Freeman
et al. [2002]. We model I L = I − I G , thus I L is the highest-
frequency component and depends on the low-frequency component
I G .

We compute training pairs from the prior texture layers of
(P Li , PGi

M ) for all priors i , where PG
M = PG − f ⊗ PG , where

f is a gaussian filter. We seek to find patches around each point that
maximize the compatibility function.

φ(I L (m, n) = P Li (m, n), I G
M (m, n))

= ||I G
M (m, n) − PGi

M (m, n)||2, (15)

where I L (m, n) denotes a patch centered at (ms + s/2, ns + s/2).
With patch s + 2 we use a patch size of 10x10 pixels with a 2 pixel
overlap. We have an additional affinity function that states that the

overlapping region of patches must be similar.

ψ(I L (m, n), I L (m + i, n + j)) = ||	(I L (m, n))

−I L (m + i, n+ j))||2, (16)

where 	 returns the overlapping regions on the two patches given
the patch size. We refer the reader to the paper by Liu et al. [2007]
for more details on this derivation.

Intuitively, maximizing the preceding function says that on a
patch-by-patch basis, we predict the highest-frequency data based
on how the mid-frequencies of the target and priors match each other.
Just as in Liu et al.’s [2007] work, our priors are roughly aligned, so
we only consider patches at the same location in the priors, and use a
raster-scan technique to perform the energy minimization [Freeman
et al. 2002; Hertzmann et al. 2001].

Where our method differs from the previous techniques is that
we perform this patch-based prediction on separate color, lighting,
and texture layers. An additional difference is that to assemble the
final locally corrected image I L , we composite the gradients of the
P L (i) into O L , which is the local component of the observed image
O relative to the global correction: O L = O − I G . We have found
the gradient-domain process to generate much cleaner composites.
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Fig. 7. Superresolution. A set of sharp, in-focus priors (first image). An image with blur and JPEG artifacts at a low resolution (second image). A close up
on original image up-sampled 2 times using bicubic interpolation (third image), the corrected face after 2x up-sampling and hallucinating texture from priors
(fourth image), and a visualization showing which parts of the face came from different patches (fifth image).

Fig. 8. Removing high-frequency shadows and uneven illumination. Prior images (on the left). A photo with uneven illumination, hard high-frequency shadows,
and saturation (top row, second image). Our result (top row, third image). The shadow has been softened significantly and the saturated areas corrected. The
bottom row shows close-up for the input image, our intermediate result after estimating the global texture layer, and the final result after using the patch-based
method.

Examples of the methods presented here are shown in Figure 6
and Figure 7, where we add texture lost due to defocus blur and
perform superresolution.

Restoring clipped data. When over- or underexposure causes
pixel values to be clipped, there is a complete loss of texture, high
and low frequency, in those regions. Thus, to in-paint these regions
we use the algorithm described earlier with a few modifications. In
the previous section, we discuss predicting a global estimate for the
texture layer and then local estimates for texture and color layers.
When restoring clipped data, the process must be altered slightly.
This is because all of the data in the saturation region is unreli-
able. Thus, we must predict global estimates for all layers within
the saturation region.

We construct a saturation/shadow mask for the clipped face re-
gion, where clipped pixels are those with original pixel values in
any color channel above or below a threshold (we use <= 10 and

>= 240 for images in the range [0, 255]). The saturation/shadow
mask is incorporated into the global estimation process discussed
previously, such that the algorithm fits the unclipped regions to the
eigenspace and the masked out region is filled with data that is most
consistent with this fit to the unmasked regions. This is achieved
using a simple masking function when performing robust least-
squares. Note that consistency is enforced with a sparse gradient
penalty across the whole image.

We compute the global high-frequency texture layer X g
I H and

color layers r g
I H and gg

I H using a joint eigenspace of texture and
color. Specifically, we perform the same operation as when restoring
high-frequency texture, but instead of using an eigenspace for the
texture layers alone we build the eigenspace by orthogonalizing the
stacked vectors of [X g

P H , r g
P H , gg

P H ] of the example high-resolution
images (indicated by the subscript PH) and then solve Eq. (14)
with these values for the vector [X g

I H , r g
I H , gg

I H ]. Note that for this
application the kernel K in Eq. (14) is a delta function, since there
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Fig. 9. Personal photo correction application. Here we show a screenshot
of an initial prototype of our personal photo correction application. Cur-
rently the system performs automatic deblurring and automatic exposure
and white-balancing. It can also suggest corrections by using the statistics
of the personal prior.

is no blur. Before performing this correction, we first perform a
global white balance (discussed in Section 4.2) such that the colors
are similar between the examples and the target face. The global
lighting correction is performed in a similar way using the lighting-
space separately, that is, an eigenspace for the Lg

PH layers of the
example images.

To predict high frequencies we then run our Restoring High-
Frequency Texture algorithm (described before) on the global es-
timates for the texture and color layers, [X g

I H , r g
I H , gg

I H ]. For the
lighting layer we only compute the global estimation and forgo the
patch-based correction as the lighting tends to contain only low-
frequency information, and it is generally undesirable to transfer
high-frequency lighting (such as hard shadows and specularities).

An example of the method presented here is shown in Figure 8.

6. PERSONAL PHOTO CORRECTION
APPLICATION

We have implemented a prototype application and user interface for
performing the corrections discussed in the previous sections. In
addition to the correction features, we have a “suggestion” system,
where the application can suggest that the user performs a particular
correction on a loaded photograph after computing some simple
image statistics and comparing these to the statistics of the prior
images.

For deblurring suggestions, our system computes the standard
deviation of the magnitude of gradients for face region of all priors.
Similarly, our system computes the magnitude and standard devia-
tion of gradients in the face regions. If the latter value is less than
90% of the former, the system suggests performing deblurring. For
the color and exposure suggestion, the application simply computes
the correction discussed in Section 4.2, as this is a fast operation,
and if the scalar adjustment for color or lighting is > 1.1 or < 0.9
(more than a 10% change) it suggests the correction. Currently, a
photo must be actively loaded for a suggestion to be made; however,
the process could easily be run offline as a way to automatically tag
a collection of new photos with suggested corrections.

Figure 9 shows a screen-capture of the GUI.

7. RESULTS

We will now briefly recap some of our results that were presented
in the body of the article and present several additional examples.

In Figures 1 and 10, we show two examples of our automatic
blind deblurring method using our personal prior. In Figure 11 we
compare our method to using Fergus et al.’s [2006] method. We
recovered a PSF using the authors’ code available online. The side-
by-side comparison shows deconvolving the image using the method
of Levin et al. [2007] with the PSF from our method and Fergus
et al.’s. For the woman in Figure 1, deblurring with the recovered
PSF using Fergus et al.’s method does not completely sharpen the
image. For the man in Figure 10, the PSF from the Fergus et al.
method seems to be overcompensating, and thus the result is overly
sharpened with halo artifacts. For both images, the kernel recovered
by our method appears more accurate and was recovered over ten
times faster. Furthermore, our method does not require any manual
input.

In Figures 6 and 7 we show two examples of face hallucination
to remove image blur. Figure 6 shows a significant amount of de-
focus that is automatically removed using our method. Figure 7
shows hallucination for a 2x up-sampling compared to up-sampling
with bicubic interpolation. For both results we show a visualization
that indicates what regions of the final results came from differ-
ent prior images when performing patch-based local hallucination.
Both results are sharp with minimal artifacts. Furthermore, for the
up-sampling result in Figure 7 our method has removed some of the
JPEG artifacts in the original image.

In Figure 12, we compare results in Figures 6 and 7 to the result
of performing hallucination using an implementation of Liu et al.’s
[2007] method. Specifically, their work predicts high-frequency tex-
ture image from mid-frequency image data. They use a generic set
of faces and use the raw image data directly (without an intrinsic
layer decomposition or gradient-domain editing). We used images
from the public Caltech and GeorgiaTech image databases as our
set of generic faces examples. The results with the Liu et al. [2007]
method have artifacts similar to those shown in their paper. We be-
lieve our results are more convincing. Also in Figure 12 we compare
using our enhancement algorithm method with a set of generic faces
instead of faces of the same person. Thus instead of using 5 to 10
hand-selected good images of a person, we used the 10 and 50 best
matching generic faces as priors. We automatically selected these
images by first aligning the generic faces to the input image and
then compute a match score that is the L2 norm of the difference of
down-sampled/contrast-normalized versions of the image. For both
results, compared to using generic faces, our results have fewer ar-
tifacts and appear to retain the original look and expression of the
person in the input image. The woman’s face in Figure 12 is partic-
ularly of note. When using generic faces and Liu et al.’s method, a
mole is introduced into the up-sampled result, even when the input
image shows no mole. When using our method with generic faces,
the woman no longer looks completely like the same person, and
the expression of the woman is altered, as she no longer appears to
be smiling as much.

Figure 13 shows the results of two synthetic deblurring experi-
ments, where we blurred a sharp image with a blur kernel, added
0.5% noise, and then solved for the PSF using our deblurring method
and the method of Fergus et al. We then used the method of Levin
et al. [2007] to deconvolve the blurred image with the ground-truth
kernel, our recovered kernel, and the kernel resulting from running
Fergus et al.’s code. The side-by-side comparisons show that the de-
convolution results with our recovered kernels are fairly close to the
quality of the results that use the known kernels, which shows that
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Fig. 10. Additional deblurring example. Our method automatically performs blind-deconvolution to recover the blur kernel. The entire image is then deblurred
using the method of Levin et al.; the recovered blur kernel is shown enlarged 5× in the top right of the rightmost image.

Fig. 11. Comparison to Fergus et al.’s PSF estimation method. For the images in Figure 10, we hand-picked a good region for estimating the PSF using Fergus
et al.’s method. We ran their code and then deblurred each image using the method of Levin et al. Fergus et al.’s system took over an hour and a half to recover
each kernel. Our method recovers more accurate kernels and produce better deconvolution results.

Fig. 12. Face hallucination comparisons. We compare our result to performing hallucination using an implementation of Liu et al.’s method and to using our
enhancement algorithm with a set of (the 10 and 50 best matching) generic faces instead of faces of the same person. Compared to Liu et al.’s approach and
compared to using generic faces, our results have fewer artifacts and appear to retain the original look and expression of the person in the input image.
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Fig. 13. Synthetic deblurring experiments. We blurred a sharp image with two different blur kernels and added 0.5% noise (second column), and then solved
for the PSF using our deblurring method and the method of Fergus et al. We then deconvolved the blurred image with the ground-truth kernel (third column),
our recovered kernel (fourth column), and the kernel resulting from running Fergus et al.’s code (fifth column). Each kernel is shown in the top right corner of
each image.

our kernels are accurate. The results using Fergus et al.’s method
are not very accurate for these images.

Figure 14 shows the results of two synthetic up-sampling/ halu-
cination experiments, where we down-sampled a sharp image by
2× and 4× and then up-sampled those images by 2× and 4× us-
ing our enhancement algorithm, an implementation of Liu et al.’s
method, and our enhancement algorithm with a set of (the 10 and
50 best matching) generic faces. With the 2× up-sampling result,
our method produces a convincing result that is sharper than tradi-
tional bicubic upsampling. Similar to the result in Figure 12, when
using Liu et al.’s method, a mole is introduced into the up-sampled
result, and when using our method with generic faces, there are a
number of artifacts including that woman’s identity and expression
are significantly changed. When performing 4× up-sampling, our
method produces an image that is a bit sharper than the others; how-
ever, this result shows the limits of our method; while we are able
to hallucinate high frequencies, there is not enough mid-frequency
information to predict the highest frequencies well, thus the result
does not match the ground-truth image very closely.

In Figure 15, we show results of experiments of using our face
hallucination algorithms without using an intrinsic image decompo-
sition and gradient-domain editing operations, two of our improve-
ments over the work of Liu et al. [2007]. The results without using
an intrinsic image decomposition have more artifacts as the effects
of the lighting and color differences between the input image and

examples are no longer factored out of the matching process. The
results without gradient-domain edits show very noticeable seams.
Our modifications create enhanced images that are seamless and
convincing.

In Figure 5, we show automatic exposure correction and white-
balancing for three images of one woman using the same set of
prior images. In Figure 16, we compare our results to using several
current color constancy algorithms. Specifically, we compared to
algorithms discussed by van de Weijer et al. [2007] and use the
author’s code and recommended parameters. Our results are more
consistent across images, appear better white-balanced, and did not
require any parameter tuning.

In Figure 8, we show an image of a woman in an apple orchard
where her face has a hard high-frequency shadow edge across it
and our algorithm reduces the shadow and recovered texture in the
saturated region of the face.

8. DISCUSSION AND FUTURE WORK

We have presented a powerful framework for improving personal
images and shown how to correct a number of the most common
errors in photographs using what we believe is a simple, yet pow-
erful concept of a “personal prior.” While recent work in data-
driven methods for photograph correction has tended towards using
large generic databases and automated methods for picking “good”
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Fig. 14. Synthetic upsampling experiments. We down-sampled a sharp image by 2× and 4× and then up-sampled those images by 2× and 4×, respectively,
using bicubic upsampling (second column), our enhancement algorithm (third column), an implementation of Liu et al.’s method (fourth and fifth columns),
and our enhancement algorithm with a set of (the 10 and 50 best matching) generic faces (six and seventh columns).

Fig. 15. Face hallucination algorithms without using an intrinsic image decomposition and gradient-domain editing. The results without using an intrinsic
image decomposition have more artifacts as the effects of the lighting and color differences between the input image and examples are no longer factored out
of the matching process. The results without gradient-domain edits show very noticeable seams.
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Fig. 16. Comparisons to color constancy. We compare our results to the color constancy algorithms discussed by van de Weijer et al. Our results are more
consistent across images, appear better white-balanced, and did not require any parameter tuning.

photographs [Hays and Efros 2007]. We have taken a very different
approach. We have focused on correcting images with faces and
have left the step of choosing good photographs to the user and au-
tomated the difficult part of editing the photo. We believe this is a
very natural and intuitive way to think about correcting images of
people.

A natural question for our work is: How many example images
are needed? We have found that this depends on the type of the
correction performed. Exposure and color correction are not very
sensitive to expression and pose changes and thus very few, even
one, photograph can be enough. Deblurring can require more im-
ages, but often not very many due to the robust estimation process
we use; the algorithm will reject outlier regions of the face and
favor matching to the more invariant parts of the face that are well-
captured by the eigenspace. Hallucination is the most demanding,
as it is not always an option to ignore parts of the face; however,
due to our combined subspace and local patch approach, we have
gotten good results with as few as seven images. While some analy-
sis has been done for the dimensionality of the generic “face space”
[Penev and Sirovich 2000], we are not aware of an analysis for spe-
cific individuals; as future work, we are very interested in such an
analysis.

A general limitation of facial appearance modification, which our
work is susceptible to, is the sensitivity of people to the appearance
of faces. In our experience, with our system we have found that users
are very sensitive to even subtle changes of photographs of people,
especially when the person is known to the user. Generally the only
pleasing and acceptable corrections are subtle and small changes,
and it is difficult to make significant changes to an image without al-
tering the fundamental mood or feel of the photograph. Often a large
change sends a photo into the “uncanny valley”. This concept states
that aesthetic qualities related to modification of human appearance
are subject to a curve where improvements in appearance are pos-
itive until a point when suddenly there is a negative reaction when
the modified appearance becomes disturbingly “uncanny”. This is a
danger with our methods just as with any other work that modifies
images of faces.

There are numerous possible avenues for future work. We think
our system and methods could be easily incorporated into commer-
cial photo editing products and could leverage photo-tagging and
-rating systems that are already available, such as image rating in
Windows Vista, ratings and labels in Adobe Bridge, or tags on Web
sites like Flickr and Facebook. Our work could be paired with a sim-
ple labeling/rating system so that users could mark images with tags
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such as “good color,” “sharp,” “good lighting.” Then images with
these labels could be automatically chosen as priors. We are very
interested in integrating our system into such an application. We
also note that as an extension to our current “correction suggestion”
system, we could use machine learning techniques to try to automat-
ically pick examples of good priors once the user has tagged a few.

We note that our system is currently limited to mostly frontal
photographs. This is primarily due to our face-detector having been
trained and tuned for frontal faces. Nonfrontal face detection is more
difficult; however, there is much work in this area and we are in-
terested in investigating improvements that would allow nonfrontal
face detection. We could then have a richer set of pose-specific pri-
ors. A related and particularly useful extension that would build on
our paradigm is to extend our personal prior concept to detection,
whereby feature detectors are tuned to a specific person. Our system
also does not currently use recognition, thus if multiple people are in
an image, the user must perform the identification to pair the priors.
We have experimented with face recognition in our framework and
hope to add this shortly to our application.

Another interesting question is: What other forms of person-
specific or class-specific prior information could be used for image
manipulation? In this work, we have used a set of images, the main
motivation being that everybody can easily acquire and select im-
ages that they like. We believe that our framework could be extended
to perform even better with full 3D geometry, detailed reflectance
properties (for example, spatially varying BRDF and subsurface
scattering properties), or a linear morphable face model. One could
include priors for the whole body rather than the faces only, and in
principle, it would also be possible to store and use the priors about
the environment (for example, the places where the photos are typ-
ically taken). An obvious disadvantage of using such information
is that, at least currently, it can be difficult to acquire this type of
data; however, using more sophisticated datasets presents several
directions for future work.

Lastly, while we have focused on improving images of faces, we
note that our framework is actually more general. Our fundamen-
tal framework could be applied to any object-specific appearance
enhancement where one has detectors and example images for a
specific object.
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